EVALUATION OF A LOW CHARGE HEAT PUMP CIRCUIT USING PROPANE

13th IEA Heat Pump Conference "Heat Pumps - Mission for the Green World", 26.-29.04.2021

Clemens Dankwerth, Timo Methler, Thore Oltersdorf, Peter Schossig, Lena Schnabel

Fraunhofer Institute for Solar Energy Systems ISE

Freiburg/ Korea, 26-29.04.2021 www.ise.fraunhofer.de

ISE

Bundesverband

LOW CHARGE HP

Low Charge Heat Pump Module using 150g of R-290

Motivation

- Heat pumps are the central heating technology for a climate-friendly future and decarbonized heating supply
- The market share has to be increased drastically in order to reach the needed reductions in CO₂ emissions
- New refrigerant solutions are needed due to F-Gas-Regulation

Quellen: Agora Energiewende: "Wärmewende 2030" BDI: "Klimapfade für Deutschland" Geea/dena: "Gebäudestudie - Szenarien für eine marktwirtschaftliche Klima- und Ressourcenschutzpolitik 2050 im Gebäudesektor"

Goals of the feasibility study (10/18 – 09/20)

- Use of propane (R290) as refrigerant
- Providing a heating capacity between 5-10kW
- Use of market available components only
- Brine to water heat pump

LOW CHARGE HP

Fraunhofer

- Market available brine-to-water heat pumps systems use 60-100 g/kW of refrigerant charge
- 150 g of refrigerant for 5-10 kW heating capacity corresponds to ~20 g/kW

Design of the heat pump module

Addressing the parts with high refrigerant content

- Reduced volume due to asymmetric plate heat exchangers
- Reduced diameter and length of piping
- Reduced quantity of oil in cooperation with compressor manufacturer
- Alternative implementation of cooling applications

Design of the heat pump module

Addressing the parts with high refrigerant content

- Reduced volume due to asymmetric plate heat exchangers
- Reduced diameter and length of piping
- Reduced quantity of oil in cooperation with compressor manufacturer
- Alternative implementation of cooling applications
- Simulation results for B0/W35 @120Hz, SH10K (IMST-Art):
 - design meets the addressed capacity range, predicted COP: 3.6 (60Hz)

LOW CHARGE HP

Measurements and results

Evaluation of four different configurations				■ v 4.0		3.04
Two different compressor types				■ v 3.0 ■ v 2.6		4.73 3.76
Different heat exchanger types				■ v 2.5 ■ v 1.0	3.62	
 Variation of temperatures, superheat, compressor speed, refrigerant charge 					0 1 2 inner volum	4.12 3 4 5 ne [1]
	V 1.0	V 2.5	V 2.6		V 3.0	V 4.0
Compressor (all ~30cm³ displacement)	Scroll Manufacturer 1	Rotary v1 Manufacturer 2	Rotary v1 Manufact	turer 2	Rotary v1 Manufacturer 2	Rotary v2 Manufacturer 2
Condenser	Long Asymmetric 16 Plates	Long Asymmetric 16 Plates	Short Asymmetric 38 Plates		Short Asymmetric 46 Plates	Short Asymmetric 38 Plates
Evaporator	Long Asymmetric 16 Plates	Long Asymmetric 16 Plates	Long Symmetric 16 Plates		Long Symmetric 28 Plates	Long Symmetric 16 Plates
Piping	Pipes v1	Pipes v1	Pipes v1		Pipes v2	Pipes v1
) Fraunhofer ISE					LC 150	Fraunhofer

ISE

LOW CHARGE HP

Measurements and results

Results for BO/W35, SH10K, @F50%

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

LOW CHARGE HP

Maldistribution leads to higher

Measurements and results

temperature differences/ reduced COPs.

evaporator

condenser

Operation of strongly charge reduced refrigerant circuits

- Refrigerant charge vs:
 - Performance
 - Stability
 - Reliability
- Brine to water only
- Alternative solutions needed
 - Exploitation of air as source
 - Cooling and defrost mode

Summary

- Using 150 g propane a heating capacity of ~8 kW was achieved – corresponding to 75 % charge reduction.
- Combination of components (compressor speed, different HX designs) and operation (superheat, subcool) gives a wide range of enhancing COP and heating capacity.
 - well designed single components
 - more equalized flow distribution in heat exchangers
 - insulation of components

low charge **hp**

Project consortium LC150

Low Charge Heat Pump Module using 150g of R-290 **Upcoming tasks**

Long term + **Cross** evaluation of promising components in system test bench Single component measurements PHE + compressor

measurements for best of variants

Operation strategies for strongly charged reduced systems

Transformation of measurement data

Proposal of 2-3 charge reduced brine to water refrigerants circuits (4-12kW)

Generic risk analysis and identification of suitable supporting actions

+

Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Clemens Dankwerth

www.ise.fraunhofer.de

clemens.dankwerth@ise.fraunhofer.de

